Electron-helium scattering in the S-wave model using exterior complex scaling
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Electron-impact excitation and ionization of helium is studied in the S-wave model. The problem
is treated in full dimensionality using a time-dependent formulation of the exterior complex scaling
method that does not involve the solution of large linear systems of equations. We discuss the
steps that must be taken to compute stable ionization amplitudes. We present total excitation,
total ionization and single differential cross sections from the ground and n = 2 excited states and
compare our results with those obtained by others using a frozen-core model.

I. INTRODUCTION

Since the early years of quantum mechanics and the
development of scattering theory, an accurate descrip-
tion of the correlated motion of three unbound particles
interacting via Coulomb forces has been a difficult prob-
lem to treat theoretically. Indeed, this problem was only
reduced to computation in the last decade [1]. The dif-
ficulty stems from the long-range nature of the Coulomb
potential which introduces a number of formal and prac-
tical complications. Although the formal theory of e-H
ionization was developed in the 1960’s by Peterkop [2]
and by Rudge and Seaton [3, 4], it has not provided a
practical path to computation. The asymptotic form of
the wave function they derived is valid only in specific
and limited geometries of the interacting particles and
has proved to be too complicated to use as a boundary
condition for solving the time-independent Schrodinger
equation. Consequently, much of the work on electron-
impact ionization has been carried out using perturba-
tive, distorted-wave type methods or with close-coupling
approaches that apply approximate two-body boundary
conditions.

A practical path to accurate computation at low colli-
sion energies was only fully realized in the past few years.
The key to overcoming the difficulties posed by the formal
theory has been to formulate methods that do not rely
on explicitly enforcing the boundary conditions for three-
body Coulomb breakup. Several theoretical methods can
be mentioned in this context. One such approach is the
“time-dependent close-coupling” method developed by
Pindzola, Schultz, Robicheaux and coworkers [5, 6]. In
that approach, a wave packet is fired at the target atom
and the time-dependent Schrédinger equation describing
its dynamics is solved in a close-coupling formulation.
Asymptotic boundary conditions are avoided since the
time-dependent Schrodinger equation is solved as an ini-
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tial value problem. Another successful method, which
has been applied to the atomic double photoionization
problem,; is the hyperspherical R-matrix method with
semi-classical outgoing waves [7]. In that approach, the
time-independent Schrédinger equation is solved without
detailed specification of three-body Coulomb boundary
conditions by merging two different approaches: an R-
matrix treatment of the entire system in the vicinity of
the nucleus along with a semiclassical description of the
evolution of the system in the asymptotic region. Ex-
terior complex scaling (ECS) [8] avoids the explicit en-
forcement of boundary conditions entirely and has been
successful in solving all aspects of the prototypical three-
body Coulomb problem, electron-impact ionization of
atomic hydrogen, to arbitrary accuracy [9, 10].

Most of the currently successful methods have been
applied to study electron-impact ionization of multi-
electron atoms by treating all but one active target elec-
tron in a frozen-core approximation, which reduces the
problem to an effective three-body Coulomb system. The
question we want to address here is whether the ECS
method offers a practical approach to studying ioniza-
tion of atoms with two active electrons. The method,
as originally applied, involves solving large, sparse sys-
tems of linear equations. Extending this implementation,
directly, to three electrons leads to linear systems that
are extremely large and prohibitively expensive to solve.
We have addressed that issue previously [11] by showing
how the ECS method could be cast in a time-dependent
formulation that scales more favorably with the number
of electrons than the original time-independent formula-
tion. The time-dependent ECS (TD-ECS) method was
successfully applied to a problem involving four particles
interacting via short range potentials.

Here we take the first steps toward applying ECS to the
full electron-helium system. In this paper we extend the
time-dependent ECS method to a system of four charged
particles and consider the S-wave model of e”-He ion-
ization. The S-wave model provides a distillation of the
full, 9-dimensional, problem into a system involving just
three radial coordinates. While the problem we consider
here is a model, it has the complexity of a true four-
body Coulomb problem - involving long-range forces and



an infinite number of two-body excitation channels - but
simplifies the full problem by treating only states with
zero angular momentum.

While the S-wave (or Temkin-Poet) model for e™-H
ionization has been a testbed for developing numerical
approaches for studying ionization, the corresponding
model for electron-helium scattering and ionization has
received little attention in the literature, with most of the
effort going towards solving the full electron-helium sys-
tem under a number of approximations. Pindzola et al.
[12] have used the time-dependent wave packet method
to compute total cross sections with the S-wave model in
the context of double ionization at high energies. This
has been the only previous calculation to treat all of the
electrons on the same footing, thus solving a true three-
electron ionization problem. Plottke et al., using the
convergent close-coupling (CCC) method [13], have also
reported results for this problem by freezing one of the
electrons in the target. Under that approximation, the
model is effectively equivalent to a two-electron system.

The method of exterior complex scaling is implemented
here in 3D with a combined finite element-discrete vari-
able representation (FEM-DVR)[14]. The FEM-DVR
basis provides a numerical grid on which to perform the
calculation, as well as an underlying expansion basis that
allows the computed wave functions to be evaluated as
a continuous function of the coordinates. ECS provides
a method for computing a numerical representation of
the physical scattering wave function on a finite volume
by imposing only simple, outgoing-wave boundary con-
ditions. Because of the simplified boundary conditions
employed, the calculations do not automatically provide
the desired scattering information. For the three-body
problem, we have previously shown how to formulate a
surface integral expression for the ionization amplitude
that provides numerically stable and accurate cross sec-
tions on a finite volume [10, 15, 16]. With multi-electron
targets, there are additional difficulties that arise which
complicate the extraction of ionization amplitudes. The
method we have devised for addressing these complica-
tions will be described as well.

The outline of this paper is as follows. The theory is
presented in Section II. We begin with a description of
the TD-ECS method for computing the scattered wave
function. We then describe how this wave function is used
in calculating amplitudes for excitation and ionization.
The formal results are then applied in the case of the S-
wave model. In Section IIT we present numerical results
for excitation as well as total and differential ionization
cross sections. In Section IV we summarize and discuss
our findings.

II. THEORY

Our treatment of this problem involves two main parts:
the computation of the three-electron scattering wave
function and the extraction of physical cross sections.

A. Calculation of the scattered wave function

The starting point for all ECS applications is an equa-
tion that determines the purely outgoing part of the full
wave function. To that end, we begin by partitioning the
full wave function ¥+ into two parts:

Ut =@ + Uyc, (1)

where the unperturbed function ® specifies the initial
conditions and the scattered wave Wgc contains only
outgoing waves. Substituting Eq. (1) into the time-
independent Schrédinger equation gives a driven equa-
tion for the scattered wave:

(£ — H)¥sc = (H — E)®o. (2)

Eq. (2) must be solved with purely outgoing boundary
conditions; the scattered wave Wgc carries information
about all the dynamical processes of interest.

The ECS method allows one to determine the scat-
tered wave on a finite volume without having to detail
its explicit asymptotic form. The method uses an ana-
lytic transformation where the electron coordinates are
rotated into the complex plane beyond some point Rg.
This is accomplished by replacing each radial electron
coordinate r with a scaled coordinate R(r), defined by

. r r < Ry
R(T‘) N { RO + (7' - Rg)ew r Z Ro. (3)

Purely outgoing functions decay on the complex portion
of the coordinate R(r). However, the function at dis-
tances less than Ry are unaffected by the scaling. Thus,
by requiring that solutions vanish at the origin and some
appropriately large distance along the complex contour,
we obtain a solution that is purely outgoing, and is ef-
fectively equal to the physical wave function on the real
portion of the grid. The “effectively” qualifier reflects
the fact that the interaction potentials on the r.h.s. of
Eq. (2) must be truncated on the complex portions of
the contour [1, 17]. As Ry is increased, the solution ap-
proaches the exact physical scattered wave on the real
portion of the grid. We note here that while the scat-
tered wave is continuous along the contour defined by
R(r), its derivative is discontinuous at Ry.

In most of the previous applications of ECS, Eq. (2)
was solved by expanding the wave function on a grid
using an appropriate discretization method (finite differ-
ence or finite elements) and solving the resulting linear
equations to obtain the scattered wave solution. How-
ever, due to the poor scaling with respect of the number
of particles, even in the case of three electrons, the size
of the linear systems become very large and impractical
to solve. Our strategy for circumventing this difficulty is
to recast the problem with an equivalent time-dependent
formulation [11] that does not require us to solve large
linear systems and that scales favorably with increasing
particle number.



In the reformulated method, the scattered wave func-
tion is computed as the Fourier transform of a time-
dependent wavepacket,

Wse =i [ e Pi(e) dn, (4)
Jo
with

x(t) = e x(0). (5)

The initial “wavepacket” is simply given by

x(0) =
(H(R(T'])7 R(’I“Q) s ) — E)‘I’O (R(T’]), R(T'Q) R )

(6)

This formulation follows from noting that the solution of
Eq. (2) which we seek can be formally written as

Usc = G x(0), (7)
with GT being the full Green’s function

Gt = (E — H +ie)*

_ 1 /OO Gi(Eic)t ,—iHt (8)
e—0 1 Jo

Because we are using ECS, the wavepacket x(¢) will limit
to zero for large {r;} as t — oo, so the +ie in Eq. (8) can
be dropped. Eq. (4) is thus formally equivalent to the so-
lution of Eq. (2). Instead of solving large linear systems,
it requires that we propagate x(0) on the ECS contour
in multiple dimensions for times sufficiently large to con-
verge the Fourier transform that provides the numerical
representation of Ugc.

We seek a method that scales well with particle num-
ber and therefore one that does not involve solutions of
linear equations representing multiple dimensions at each
time step. To that end, we employ a split operator ap-
proximation [18] for the time propagation operator. The
Hamiltonian for d particles is first separated into one-
two-body terms:

d d
H = lz:; h,l (’1“1) + i;1 Vo (T,j, Tj) (9)

EH1+V27

and the propagator is then approximated as

) At
e HHAL exp [—i <7> V2:|

d
y [Hemml exo [ (g) VQ} |

i=1
To approximate the one-body Hamiltonian terms, we use
a second-order Crank-Nicolson propagator,
, At At?
e M (Lt ihy = — Wi =)""
( 15 ey
).

(11)
2
x (1— ih,1% - h,fAl—’;

The scaling properties of this propagator depend on
the representations of the operators, which we have yet
to specify. Earlier implementations of ECS used finite
difference methods, but in the present work we employ,
for each radial electron coordinate, the combined finite
element-discrete variable representation (FEM-DVR) in-
troduced by Rescigno and McCurdy [14]. The DVR
combines a high-order polynomial treatment of the ki-
netic energy operator with the advantage of a diagonal
representation of any local potential operator. For the
DVR representation, we use a basis of so-called “Lo-
batto shape functions” [19], which are Lagrange inter-
polating polynomials with mesh points derived from a
Gauss-Lobatto quadrature. Gauss-Lobatto quadrature is
similar to the more familiar Gauss-Legendre quadrature,
with the difference that in Gauss-Lobatto quadrature two
of the points are constrained to coincide with the speci-
fied end-points. Since Gauss-Lobatto quadrature explic-
itly includes the end-points as quadrature points, it is
possible to combine this particular variety of DVR with
the finite-element method, as outlined in ref. [14]. More-
over, by choosing one of the element boundaries to coin-
cide with the point Ry where the real and complex parts
of the ECS contour join, the derivative discontinuity in
the wave function at Ry is handled exactly.

With the FEM-DVR, matrix element computation is
greatly simplified compared with other basis set methods.
When the integrals are approximated using the underly-
ing Gauss quadrature, the local potential operators have
a diagonal representation. Matrix elements of derivative
operators, such as the kinetic energy, are not diagonal,
but are given by simple analytic formulas. With FEM-
DVR, the kinetic energy operator has a blocked matrix
structure, where each block representing a particular fi-
nite element is full, and the various blocks are connected
by the end-point DVR functions that join adjacent ele-
ments [14]. Thus the overall kinetic energy matrix, while
not diagonal, can be very sparse, depending on the num-
ber of elements and order of quadrature used in each
element.

The efficiency of the time-dependent formulation in
more than two dimensions becomes readily apparent with
an FEM-DVR representation. Since the matrix elements
of local functions are diagonal and the one body Hamil-
tonian terms separate, the number of operations needed
to evaluate the exponential propagators in Eq. (10) can
be easily estimated. Assume we have n grid points in
each of d dimensions. For one time step, each opera-
tion on the wave packet with exp(—iV2At/2) requires
one multiplication per grid point, or of order n? opera-
tions. The operator exp(—ihiAt) in each dimension can
be represented by an n xn matrix (Eq. (11)) that need be
computed only once. Each operation with exp(—ih; At)
involves a matrix multiply for one of the dimensions that
has to be done for each point in the other dimensions,
and thus requires of the order n? x n?~! = n*+! elemen-
tary operations. The entire propagator thus requires of
order 2n® 4+ dn®t' ~ dn®t! operations per time step. If



we attempted to represent the time-independent driven
Schrédinger equation on the n? x n? grid, we would have
to solve a sparse set of linear equations for ¥g¢. If itera-
tive methods were used, which offer the best scaling with
n, the effort required would scale no better than n??. The
scaling advantage of the time-dependent approach imple-
mented here is that of n%+! versus n??. For d = 3 and
n = 150, which is typically required in these calculations,
that advantage is 5 x 10® vs. 103 operations to perform.

B. Extracting cross sections

The formal and computational advantage of ECS is
that it does not make reference to any specific asymptotic
boundary conditions other than the requirement that the
scattered wave be purely outgoing. Once the scattered
wave has been calculated, we must, decide how to extract
the detailed dynamical information it describes. One
would not normally view this as a major issue, since in
most standard methods, the asymptotic boundary condi-
tions that define the dynamical quantities of interest are
used in the generation of the wave function. But in the
ECS method, what is obtained is a numerical representa-
tion of a wave function that contains information about
all processes that are allowed at a specific total energy, as
detailed specification of scattering boundary conditions
is avoided by design.

A simple and straight-forward way to obtain the ion-
ization cross section is to compute the quantum mechani-
cal flux through a surface that lies inside the region where
the coordinates are real. While this method was used in
the first successful applications of ECS to e-H ioniza-
tion [9, 20], there are intrinsic problems with this ap-
proach. The method requires fairly large grids since the
numerically computed quantities must be extrapolated
to infinite grid size, where the flux can be related to the
differential cross sections for ionization. More serious is
the problem that the grids must be large enough to al-
low the physical region inhabited only by the ionization
portion of the scattered wave to be distinguishable from
the parts that describe discrete two-body channels. The
requirement that the ionization wave be “uncovered” be-
fore the asymptotic flux is calculated can require grids
that extend well beyond the range where the interaction
potentials are appreciable.

The most practical, and economical, approach to cal-
culating both excitation and breakup cross sections is to
formulate the problem in terms of integral expressions
for the underlying scattering amplitudes [15]. For dis-
crete excitations in the present case of a three-electron
radial problem, we can begin with the formal expression

f1—>n = \/ik_n <¢n(r1,r2)sin(knr3) ‘E — H1| ‘I/+>, (12)

where ¢,, is a discrete target state and H; is the unper-
turbed Hamiltonian corresponding to the incident chan-

nel arrangement, so that:
(Hi1 — E)|¢n(r1,72) sin(k,r3)) = 0. (13)

It is to be understood that the matrix element in Eq. (12),
and in all the expressions that follow, is carried out over
a finite volume defined by some hyperradius where the
electron coordinates are all real. We can then use Green'’s
theorem, along with Eq. (13), to express the amplitude
as a surface integral:

\/%—"fs[¢n(r17r2)sin(knrg)V\Iﬁ(rth,rg)
—UF(ry,re,73) Ve (11, 1m9) sin(knrs)] - ds
ﬁ Jslén(r1,m2) sin(knrs) V¥sc(ri,m2,73)

—Wsc(ri,re,73)Von(ry,r2) sin(k,rz)] - ds
(14)

fi—)n =

where the replacement of U+ by Wgc in the surface in-
tegral follows from an examination of the integrand of
Eq. (14) on the surface.

The derivation of a workable formula for the ionization
amplitude requires some care. We preface this discussion
by noting that all of the matrix elements considered here
are presumed to be evaluated on a large but finite volume,
so we will employ the standard rearrangement theory for
short-ranged interactions and not address any of the dif-
ficulties posed by the formal theory of ionization. The
connection with the formal theory, and in particular the
question of the proper definition of the overall phase of
the ionization amplitude, which does not affect any phys-
ical cross section, has been discussed at length elsewhere
and will not be repeated here [16, 21].

We have previously pointed out that, for a one-electron
target, the following expression for the breakup ampli-
tude [15],

f(k],kg) = 2(sin(k1r1)sin(k2r2) |E —T|‘Ilsc> (15)

where T is the total kinetic energy operator, while for-
mally correct, does not prove to be useful in an actual
numerical calculation on a finite volume. This failure
can be traced to the contribution of discrete two-body
channels in ¥ge which give rise to overlap terms that
properly converge to Dirac ¢ functions only for infinite
volumes. This contamination of the ionization amplitude
from bound states renders Eq. (15) useless on a finite
volume. The solution to this problem is to employ a for-
mally equivalent expression with distorted waves in the
final state:

fki, ko) = 2(pr, 1, |E — T — V1| ¥sc), (16)

where V; is the distorted wave potential corresponding
to the final state. In the e -H case, for example, we
choose the distorted waves to be Coulomb functions with
Z =1 [16]. Since the Coulomb functions are eigenfunc-
tions of the same Hamiltonian as the hydrogenic bound
states, orthogonality is realized on the finite volume and



the spurious contributions to the breakup amplitude are
eliminated.

The natural extension of Eq. (16) to the present he-
lium case, for single ionization leaving the ion in the n-th
excited state, would be

ki, ko) = 200, ry |E =T — Vi| ¥gc) . (17)

But now the use of distorted waves alone cannot com-
pletely eliminate the contamination of the ionization
amplitude by discrete excitation channels, since there
is generally no orthogonality relationship between the
single-particle distorted waves and the exact two-particle
bound states of the target. Nevertheless, we can still
achieve much by choosing the distorted wave potential
judiciously. The excited states of the model S-wave he-
lium atom, both singlet and triplet, are reasonably well
described by single-configuration wave functions of the
form "3|@15¢ns|, where @15 is the 1s orbital of He'.
The ¢, orbitals for the corresponding singlet and triplet
states are of course not identical, but they are reasonably
similar. With these considerations in mind, we choose
the distorted waves to be solutions of the triplet static-
exchange equation,

2
(T—;+.]]S—K]S—k}2/2)(pk:0, (18)

where J14 and K are the usual Coulomb and exchange
operators constructed with the He™ 1s orbital. Note that
the HeT 1s orbital is an eigenfunction of this equation, as
are the triplet ¢,s orbitals. This choice therefore guar-
antees approzimate orthogonality between the distorted
waves and all the excited helium target states. It does
not, however, eliminate contamination of the breakup
amplitude by the ground-state channel, since the neu-
tral helium ground-state 1s orbital is very different from
the He™ 1s orbital.

To address the problem of contamination by the elastic
channel, and to further improve on the prescription for
computing a stable ionization amplitude, we employ the
technique of “asymptotic subtraction” which we intro-
duced in our earlier study of breakup with short-ranged
potentials [11]. The idea is to try to remove the asymp-
totic contribution of the discrete two-body channels to
the scattered wave before computing the ionization am-
plitude. Asymptotically, the scattered wave has the form

\I’gc = iqog -+ Z (%) ¢n(1“1,7“2)€ik"r3. (19)

So by subtracting the sum that appears in Eq. (19) from
Wg we can, in principle, isolate, asymptotically, the pure
ionization portion of the scattered wave. The excitation
amplitudes f;_, can be calculated using Eq. (12) or (14).
There are of course an infinite number of discrete two-
body channels, but on a finite volume only a finite num-
ber of bound states can be supported.

The ionization amplitude is thus evaluated by starting
with the expression

f(k1,ks) = 2(pnpr, ks |E =T = V1| UGE),  (20)

and using Green’s theorem to convert it to a surface in-
tegral

Flhkno k) = / [on(r1) ks (r2) @iy (r) VLA (1, 72, 73)
JS
~WEE(r1, 2, 3)Veon (1) @k, (r2) @k, (r3)] - B dS.
(21)

The use of the surface integral form of the amplitude,
which only depends of the asymptotic part of the scat-
tered wave, is now essential, since asymptotic subtraction
changes the interior part of the scattered wave and makes
the volume integral representation of the amplitude in-
valid. We have found that asymptotic subtraction and
the correct choice of distorted waves are both essential in
computing accurate ionization cross sections.

C. S-Wave model of helium

As we have mentioned, the S-wave model arises from
retaining only the first, [ = 0, term in the angular mo-
mentum expansion of the electron repulsion potentials.
The full Hamiltonian for the e~ -He system in the S-wave
model is

H(T17T27T3):
2 2 2
T+ To+Ty— = — = — Sl
1 T2 T3
UL (22)
’I“>(1,2) T'>(1,3) ’I“>(273)7

where 7 (1,2) = max(ry, 7).
The helium target bound states ¢, (ri,r:) are eigen-
functions of the 2-electron Hamiltonian,

Hi(rr,r2)én(ri,re) =
2 2 1

T +Ty— — — — 4+ ——
1+ 12 1 r2+r>(1,2)

= En¢n(ri,72).

¢n (Tl, TQ) (23)

The spatial part of these states can be either symmetric
or anti-symmetric with respect to interchange of the two
electron coordinates, corresponding to singlet, s,, = 0, or
triplet, s, = 1, spin-coupling of the target electrons.

The initial conditions for determining Wgc are con-
tained in the specification of ®q: since the full Hamil-
tonian is totally symmetric, the permutational proper-
ties of Wge are set by the initial wave function. To con-
struct a physical three-electron initial state, labeled by
target state » and spin s,, and total spin (S = 1/2 or
S =3/2), we can apply the antisymmetrization operator
to the product of a three-electron spin state, |S, s,,), and
an unperturbed spatial function,

sin(k,r3)

®5 " (11,1, 13) = A | ¢ (11, 72) Vk,

IS, $n)
(24)



For example, the three electron doublet spin eigenfunc-
tion (S = 1/2) for a triplet target state (s, = 1) is

\%, 1) = %(Qaaﬂ — afa — faa),
L. For the

where we have chosen the projection ms = 5
fully antisymmetric three-electron state, the spatial and
spin portions of the wave function generally do not factor.

Having defined the unperturbed initial state with
Eq. (24), we must construct a solution of the driven
Schgédinger for the corresponding scattered wave,

(25)

(B~ MU = (H - )3y (20)
In practice, it is only necessary to solve this equation
for a single arrangement of the electron coordinates since
any other arrangement can be obtained by an appropri-
ate permutation of electron coordinate labels, ie., we can
propagate an unsymmetric initial state and then con-
struct the desired physical state by combining the solu-
tion vectors with different permutations of the coordinate
indices. The single arrangement we compute is

sin(k;r3)
E — H)yYi(ri,m2,13) = (H — E)¢p; (r1,72) ——7—
( Ji(ri,ra,m3) = ( )b (11,72) NG
(27)
The amplitudes for discrete excitation, Fiisf7si, can

then be constructed from the quantities:

sin(kyrs)
Vi
sin(kyry)

Vi

Ln(kfrz) E - PIS]2 1[]'(T1.T2.T3)>

Vi “

= 2<Q5nf(7'],7'2) E—H&23 ’IJZJZ'(T'],T'Q,T'g)>

fﬁ) = 2<¢5nf(7”2=7”3) E— H! 1,/11'(7”1=7“2=7“3)>

=2 <¢Tlf (T37 Tl)
(28)
where Héjk = H(ri,rj)+T}). Using Green’s identities, as

discussed above, these matrix elements can be converted
to surface integrals. For example,

f](fl) _ﬁ/,‘ I:anf(rlirz)Sin(kfr3)v’l/}i(r]7r27r3)

- wi(Tl,TQ,Tg)v¢nf (’I"l,’l"g)Sin(ka'g)] . fl dS
(29)

These arrangement amplitudes are not entirely indepen-
dent. In fact, fﬁ) = niw'ff;?), where m, = (1 — 2s,)

is the parity of target state n. The arrangement am-
plitudes are combined to obtain the physical amplitudes
Fiis]{’si. Table T gives explicit formulas for the various
physical amplitudes in terms of the arrangement ampli-
tudes, based on the initial and final spin states of the
three electrons. The physical cross sections for inelastic

scattering are computed using

1S,5:) 1S.55) F

5.0) [50) g2 - £ - ]
4,0) |51) S - 17
1) [5.0) L =1
RN R 1 R i
31 131 i+ P+ A

TABLE I:. Expressions for scattering and ionization ampli-
tudes in terms of individual arrangement amplitudes.

For the single ionization amplitudes, similar consider-
ations apply. Following the discussion of Sec. II B, we
begin by using asymptotic projection to isolate the ion-
ization portion of the scattered wave for a single arrange-
ment:

Y (11, e, m3) =ti(r1, 2, 1)
=3 (0 anlr et

+ fr(j) Pn(ra,r3)e’ "
+ fr(j) ¢n(7“3,7“1)eik"r?‘) -

(31)

Note that the scattered wave corresponding to a sin-
gle initial arrangement has asymptotic two-body channel
components in all arrangements, each of which must be
removed in computing i°".

For the single ionization amplitudes, the final states
are assembled from products of a He™t orbital ¢,, and two
continuum distorted waves ¢y, and ¢y,. As in the case
of excitation, we can define different arrangement ampli-
tudes from which the physical ionization amplitudes can
be assembled:
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I Gk k) = 2 (pn(ra)pr, ()aa (r2) | — Hol ™ (r1,m2,73)
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FIG. 1: Excitation cross sections from the 1*S, ground state.
Filled symbols: singlet final states. Open symbols: triplet
final states. Symbols with dark lines: Current ECS results.
Light symbols: CCC results from [13]

We must emphasize again that these ionization ampli-
tudes, written in Eq. (32) as volume integrals for nota-
tional simplicity, must be evaluated as surface integrals.
Again, these amplitudes are not completely independent;,
but related through the following symmetries,

fﬁ)(khkz) = Wif](c?(kmkl)
FD (ki ko) = miflD (ko k). (33)

« . P . . S,s5¢,8i .
The “physical” ionization amplitudes F;70p™ are again
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FIG. 2: As in Fig. 1, for the 2?8, excited state.

given in terms of the arrangement amplitudes in Eq. (32)
by the same formulas shown in Table I.

To compute the cross sections for unpolarized incident
electrons, we must sum the contributions from all allowed
intermediate spin couplings. For overall doublet coupling

(S =1/2), the single differential cross sections are given
by

dU'S:]/2 4 1 1/2 =0.5; 2
— F / 2 Sf=U,8; ]{7 k
de k1 ko By (2si—|—1)(‘ i (k. b2)
_ . 2
+ ‘F]i/“fi]’sz(khkﬁ )7

(34)
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while for the high-spin case (S = 3/2), the cross section

1S
dg'S:3/2 4 9 2o o ,
= = Fi/2sr=1si= " -
de klk?EO <3> < i (k]‘kz) )
(35)

The total ionization cross section for a given total spin
is computed by integrating the SDCS:

E S
P / dee. (36)
o de

III. RESULTS

The computations were all carried out using an FEM-
DVR representation of the wave functions for a single
initial arrangement on a three-dimensional grid. For
each radial dimension, the DVR was based on 15" or-
der Gauss-Lobatto quadrature in each of 11 finite ele-
ments, 9 real and 2 complex, for a total of 153 basis
functions. The complex turning point, Ry, was located
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FIG. 4: Comparison of SDCS for ground-state helium at
E = 3 eV computed with and without the use of distorted
waves and/or asymptotic subtraction. Light solid curve:
SDCS (divided by 10) obtained with Coulomb functions and
no asymptotic subtraction. Dashed curve: SDCS obtained
with Coulomb functions and asymptotic subtraction. Dark
solid curve: SDCS obtained with distorted waves and asymp-
totic subtraction.

at 101 bohr. The full three-dimensional grid thus con-
tained 1533=3,581,580 points. We have already noted
that the DVR gives a diagonal representation of all local
operators. In this context, we should point out that an
accurate DVR representation of the two-electron repul-
sion operators that appear in Eqgs. (22) and (23) requires
some care. These details are fully described in ref. [11].
The time propagation was carried out using the split op-
erator and Crank-Nicolson schemes previously described
in section ITA. The wave function was evolved in time
t0 Tmax = 400 a.u with time steps of At = 0.1 a.u.

The amplitudes for excitation and ionization were all
assembled from permutations of the appropriate single-
arrangement amplitudes, based on final and initial sym-
metries, as indicated in Table I. These arrangement
amplitudes were all evaluated using the surface integral
forms of the amplitude expressions, Egs. (28, 32). The
edges of the surface were located just inside Ry at 100
bohr.

We have calculated excitation and ionization cross
sections for the S-wave model from both ground- and
excited-state, 23S and 2'S, target atoms. The two-
electron target states were always obtained by diagonal-
izing the target Hamiltonian given in Eq. (23) using the
real portion of the 2D FEM-DVR basis.

Figures 1, 2, and 3 show cross sections starting from
He 1'S, 23S and 2'S, respectively, for excitation to
states with principle quantum number up to n = 3. We
have also plotted the results of convergent close coupling
(CCC) calculations [13] in those figures for comparison.
In all cases, the agreement between the two methods is
good. This comparison also indicates that, for excitation,
the frozen-core model, which is used in the CCC calcula-
tions, and the full model with two active electrons used



1's . 1sk

g
>
T

o o e
(2] [e2] = N
T T T T
1 1 1 1

cross section (10 cm?)
sy
T
|

o o
N

T

1

Cole e L e L e L e Ly )
5 10 15 20 25 30

2%s . 1sk

IS
T

2,
cm’)
w
T

8
N
N 0w
T 1

cross section (10™
e
1

=
3}

25 30
R
1
— 2's _ 1sk
e 1r
o
5
W 08F -
—
)
§08F -
=
5ol ]
A
go.z -
U SR (N T SR (N SR S S SR [ S SR S S S S SRS S S S |
0 5 10 15 20 25 30

Total Energy (eV)

FIG. 5: Total ionization cross sections from different initial
states.

here give very similar results.

Differential single ionization cross sections were com-
puted from the ionization amplitude expression given in
the previous section. The SDCS were then numerically
integrated over the full range of ejected electron energy
to produce total ionization cross sections.

As outlined above, the ionization amplitudes were com-
puted using triplet static-exchange distorted waves for
the ejected free electrons along with scattered waves
in which the ionization component was isolated using
asymptotic subtraction. Nine two-body channels, corre-
sponding to target states with principal quantum number
up to n = 5, were used in the asymptotic subtraction.
The use of properly defined distorted waves, as well as
asymptotic subtraction, are both critically important in
obtaining accurate ionization cross sections. This point is
illustrated in Fig. 4, where we show the SDCS for ground-
state ionization at £ = 3 eV computed three different
ways, first with Coulomb functions and no asymptotic
subtraction, then with Coulomb functions and asymp-
totic subtraction and finally with distorted waves and
asymptotic subtraction.
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FIG. 6: Examples of SDCS fitting at 2.0 eV (left) and 30.0 eV
(right) above the first IP starting in the 1'S ground state.

Dark curve: quadratic fit of SDCS. Light curve: computed
SDCS.

The total ionization cross sections from the different
initial states are all plotted in Fig. 5, along with the
frozen-core CCC results [13]. Once again, we find very
good agreement with the CCC results. There is a slight
discrepancy in the case of ionization starting in the 2'S
state, where the present total cross sections peak at
slightly smaller values than the CCC results.

The single differential cross sections offer the most de-
tailed information about breakup in the S-wave model
and are the most difficult quantities to accurately calcu-
late. Even with asymptotic subtraction and the properly
chosen distorted waves there are small oscillations in the
cross sections, which arise from incomplete elimination
of excited singlet two-body states, which are not com-
pletely orthogonal to the distorted wave. Fig. 6 shows
the SDCS from the ground-state at total energies of 2
and 30 eV, to show the typical behavior at low and high
energies. We found that the SDCS in all cases could be
well fit with a quadratic function whose parameters are
uniquely determined by a least-squares fit that gives the
same integrated cross sections as the unsmoothed data.
The SDCS values presented in Figs. 7-10 are all obtained



from the fitted quadratic curves.

Interestingly, the SDCS for the high spin, S = 3/2,
case, shown in Fig. 9, required no smoothing at all. The
scattered waves which determine these cross sections, by
symmetry, can only contain contributions from triplet
two-body channels. The triplet distorted waves we em-
ploy remove these contributions effectively exactly. We
verified that for these cases, identical results are obtained
without asymptotic subtraction. We note that the high-
spin SDCSs are zero at equal-energy sharing, which is
also required by symmetry.

Differences between the present S-wave results and the
frozen-core CCC treatment become more apparent when
we compare SDCS values. In the CCC study, SDCS
results are only reported for equal-energy sharing, for
which case CCC is purported to provide convergent re-
sults [13, 22]. In Fig.11, the SDCS, at equal-energy shar-
ing, are plotted as a function of total energy. Since Plot-
tke et al. define the total cross section as the integral
of the SDCS from zero to E/2, we have multiplied our
results by two for the comparison. Also, the CCC results
were published as separate singlet and triplet contribu-
tions, not as their sum. However, the triplet contribution
to the SDCS at equal energy sharing should, formally, be
3 times the singlet contribution. Thus to compare with
our results, we have multiplied the CCC singlet contri-
butions by 4, and the triplet contributions by 4/3. While
the present results and the CCC values are in good agree-
ment above 10 eV, the CCC SDCS are noticeably smaller
at lower energies.

IV. DISCUSSION

This study represents a first step in applying the ECS
formalism to treat electron collisions with a target that
has two active electrons. The S-wave model, which sim-
plifies the full e~-He problem by treating only states with
zero angular momentum, is nevertheless a true Coulomb
four-body problem and, when treated in full dimension-
ality, displays much of the complexity of the full problem.
By employing a time-dependent formulation of exterior
complex scaling, we can still obtain a numerical repre-
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sentation of the time-independent scattered wave while
avoiding the problem of solving large systems of complex
linear equations. There is therefore every reason to be-
lieve that the same numerical techniques we have used in
this study could be successfully applied to the full e -He
problem.

The amplitudes for discrete excitation are easily com-
puted from the numerically obtained scattered waves and
are found to give cross sections that agree well with pre-
vious CCC studies that employed a frozen-core model.
The calculation of accurate ionization amplitudes, on the
other hand, poses significant formal and computational
difficulties that are not encountered when dealing with
single active electron targets. Our approach to this prob-
lem has been to combine “asymptotic subtraction” along
with a judicious choice of continuum distorted waves to
minimize the contamination of the ionization amplitudes
by discrete two-body channels. This strategy was found
to be reasonably successful in the present case and should
also carry over to the full e-He problem. While the total
cross sections for ionization we computed were found to
agree well with the frozen-core CCC results, there were
noticeable differences in the single differential cross sec-
tions, particularly at low energies. It is not clear whether
these differences can be attributed to deficiencies in the
frozen-core model or to convergence problems in the CCC
calculations.
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FIG. 10: SDCS for ionization from the 2'S ground state for various energies above the first IP. Left panel, y-axis intercept
from top to bottom: 2.0, 1.0, 3.0, 4.0 and 5.0 eV. Right panel, top to bottom: 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 eV
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